Award details

StrucSat - How food structure affects satiety

ReferenceBBS/E/F/00042738
Principal Investigator / Supervisor Professor Alan Mackie
Co-Investigators /
Co-Supervisors
Institution Quadram Institute Bioscience
DepartmentQuadram Institute Bioscience Department
Funding typeResearch
Value (£) 3,065
StatusCurrent
TypeInstitute Project
Start date 01/01/2014
End date 31/12/2018
Duration59 months

Abstract

Foods destined for weight management are most often products with reduced energy content. An alternative strategy is to develop food products with enhanced effects on satiety that can decrease food intake. Deliberate modification of food structure and texture can provide novel possibilities for affecting the eating rate, amount consumed and satiety as well as energy homeostasis. The project StrucSat will show, at a fundamental level, how food structure can be used to affect satiety. Based on insight at the molecular level into interactions between selected food components (milk proteins, polysaccharides), novel model foods with identical energy content and composition will be developed. These foods will be designed to have different structure at the macro- and microstructural level, both pre and post ingestion. Digestion (both in vitro and in vivo) and physiological responses (energy uptake and satiety) will be quantified and related to the molecular and structural parameters. This will be achieved by applying a cross-disciplinary approach, bringing together competences within food ingredient manufacture, food structure engineering, sensory science, protein and polysaccharide chemistry, food intake and digestion, animal models, human nutrition, and the physiology and measurement of satiety and energy homeostasis. The aim is to provide a basis for a more intelligent approach to the design of sustainable food products and food ingredients. This will enable food and ingredient producers to predict and document how a given component or process will affect satiety and energy uptake, hence providing consumers with palatable and desirable products designed for satiety management.

Summary

unavailable
Committee Not funded via Committee
Research TopicsDiet and Health, Neuroscience and Behaviour, Structural Biology
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file