BBSRC Portfolio Analyser
Award details
DNA-directed construction of three-dimensional photosynthetic assemblies
Reference
BB/N016378/1
Principal Investigator / Supervisor
Professor Glenn Burley
Co-Investigators /
Co-Supervisors
Institution
University of Strathclyde
Department
Pure and Applied Chemistry
Funding type
Research
Value (£)
227,788
Status
Completed
Type
Research Grant
Start date
01/10/2016
End date
30/09/2019
Duration
36 months
Abstract
This research programme seeks to establish a working platform that will assemble photosynthetic proteins within DNA nanostructures. A hallmark of our approach is to use engineered photosynthetic proteins that selectively bind to target DNA sequences - both single-stranded and double-stranded - within a DNA nanostructure. This sequence selectivity directs the assembly of these proteins within a DNA matrix, thus providing spatial and positional control. Additional positional control of the overall nanostructure will then be imparted by directing the immobilization of the DNA-photosynthetic complexes by nanolithography. This bio-inspired platform methodology merges the principles of "bottom up" DNA nanotechnology with "top down" nanolithography and would provide the means to control, for the first time, the location of each photosynthetic protein module, inter-module distance and their relative orientation in both two- (2D) and three-dimensions (3D) along surfaces. Furthermore, this new design lexicon, if successful, will provide a framework to correlate how these parameters influence overall light harvesting efficiency.
Summary
The aim of this project is to explore a completely new way of organising light harvesting modules where they can be placed in both two and three-dimensions with nanoscale precision. We will systematically investigate how the transfer of excitation energy from one light harvesting module to the next correlates to their overall arrangement within a DNA nanostructure. Going into the third dimension will be a key aim of this proposal since this will allow the building of larger cross-sections of absorbance. Any device that aims to use solar energy must harvest the light as a first step. As such, this proposal sets out to develop a new strategy to optimise the first step in this process.
Impact Summary
Potential Economic Impact of this Research Synthetic Biology - One of the fundamental drivers of this research programme is the synthesis of modified DNA and DNA-binding molecules. Both synthetic aspects will deliver a battery of new methods to prepare novel compounds that could have wider economic impact on the Synthetic Biology and Diagnostic sectors of Life Science research beyond the lifespan of this 3 year project. Diagnostics - New methodology to direct the assembly of DNA nanostructures on solid surfaces will pose additional benefits to the medical diagnostic sectors, particularly those directly associated with the identification of nucleic acid and protein biomarkers. It is envisaged that the benefits will arise from the development of new surface modification chemistries, new methods to incorporate functionality into DNA, which in turn could improve the sensitivity and selectivity of new biomolecular analytes and novel techniques to detect analytes using optical methods. Outputs: Patent protection of Intellectual Property; exploration of licensees. Mechanisms of delivering Economic Impact: UoS's and UoG's Knowledge Exchange partnership and Impact Acceleration Account (IAA), Scottish Enterprise Proof of Concept or the Technology Strategy Board's Biomedical Catalyst; Collaborative PhD students through Biomolecular Devices CDT (UoS). Potential Societal Impact of this Research This research describes a Synthetic Biology-inspired rationale to produce functional DNA nanostructures. Synthetic Biology has been designated a priority research area by the British Government and "has the ability to revolutionize major industries in bio-energy and bio-technology in the UK" (David Willets). At present, the application of Synthetic Biology techniques to create functional DNA-directed devices has not been recognized as a potential area for wider exploitation. Therefore the potential societal impact could be very significant. In order to prepare for this, public engagement with stakeholders associated with the field of UK Synthetic Biology would expedite acceptance of new and emerging applications. Outputs: Public discussion of the role of Synthetic Biology and Nanotechnology in society; Dissemination of results through the mainstream press, UoG and UoS websites. Mechanisms of delivering Societal Impact: Delivery of a Coffee House Lecture in Glasgow's City Centre; Involvement in Glasgow Science Festival and Glasgow Science Centre events.
Committee
Research Committee D (Molecules, cells and industrial biotechnology)
Research Topics
Bioenergy, Synthetic Biology
Research Priority
X – Research Priority information not available
Research Initiative
X - not in an Initiative
Funding Scheme
X – not Funded via a specific Funding Scheme
Associated awards:
BB/N016734/1 DNA-directed construction of three-dimensional photosynthetic assemblies
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search