BBSRC Portfolio Analyser
Award details
A novel strategy for microarrays of selective binding agents
Reference
BB/D017432/1
Principal Investigator / Supervisor
Dr Philip Day
Co-Investigators /
Co-Supervisors
Professor Robert Dryfe
,
Professor Joshua Knowles
,
Professor John McCarthy
,
Professor Jason Micklefield
,
Professor Stephen Oliver
Institution
The University of Manchester
Department
Chemistry
Funding type
Research
Value (£)
590,475
Status
Completed
Type
Research Grant
Start date
04/09/2006
End date
03/09/2009
Duration
36 months
Abstract
Combimatrix have produced, and will make available to us, an instrument that uses elecrochemically generated acid to effect localised deprotection and thus synthesise defined oligonucleotide arrays (12,000 per chip) in situ. Using this we wish to carry out the following: 1. Evolve nucleic acid aptamers that selectvely bind peptides, proteins, metabolites and other non-nucleotide determinands 2. Tag such determinands so that the extent of binding can be determined quantitatively via fluorimetry and/or electrochemistry 3. Knowing the sequence at every spot in each generation, to optimise in a computational sense in parallel and multi-objectively the sequences that are synthesised during the evolution of the array. 4. Develop MALDI and FTIR methods to effect semi-quantitative detection of peptides derived from a yeast whole-cell lysate that have bound to specific probes 5. Perform electrochemical optimisation in an automated closed-loop manner 6. Evolve aptamers that change quantitatively the fluorescence of a fluorophore when the specific binding metabolite is present 7. Produce a suitable database for storing all the data, and therewith to perform QSAR on selected aptamers to understand the structural basis for the binding specificities obtained 8. To evolve peptide aptamers in a similar way to the evolution of nucleic acid aptamers, above 9. To exploit cleavable nucleic acid arrays for the purposes of reverse transfection. 10. Thereby to deliver a technology that can perform quantitative proteomics in the same way that transcriptomics is now performed in microarrays.
Summary
There is a continuing need for high-throughput assays of multiple substances at particular levels of biological organisation, the so-called omics methods. Microarrays have been widely used for transcriptomics, and occasionally for proteomics (protein microarrays). In the latter case it is necessary to select an antibody or equivalent binding agent for each target. We here propose to develop a novel strategy that can cut the development of selective binding agents by orders of magnitude, and will apply it to a variety of target determinands.
Committee
Closed Committee - Engineering & Biological Systems (EBS)
Research Topics
Microbiology, Technology and Methods Development
Research Priority
X – Research Priority information not available
Research Initiative
X - not in an Initiative
Funding Scheme
Industrial Partnership Award (IPA)
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search