BBSRC Portfolio Analyser
Award details
Regulation of cell wall synthesis and assembly in grasses
Reference
BBS/E/W/00003134C
Principal Investigator / Supervisor
Professor Iain Donnison
Co-Investigators /
Co-Supervisors
Dr Gordon Allison
,
Dr Maurice Bosch
Institution
Aberystwyth University
Department
IBERS
Funding type
Research
Value (£)
416,000
Status
Completed
Type
Institute Project
Start date
01/04/2008
End date
31/03/2012
Duration
48 months
Abstract
The composition and cross-linking of cell wall polymers determines the efficiency by which biomass can be processed to release the abundant cell wall sugars for biofuel production. A better understanding of the cell wall structure is therefore essential to optimise the energy-potential of grasses and to enable the engineering and breeding of varieties in which cell-wall composition and cross-linking is optimized for conversion. It is estimated that more than a thousand genes are involved in the synthesis and remodelling of cell walls, but only a handful of genes have been characterised. Despite the considerable interest in developing grasses as a renewable energy source, the discovery of genes involved in cell wall biogenesis in these monocots is particularly poor. To optimize the amount, composition, and structure of cell walls in grasses we are identifying some of the genes involved. Due to the available genetic tools, its close phylogenetic relationship with energy grasses including Miscanthus, and C4 photosynthesis, maize is an ideal model for the discovery of cell wall related genes and the translation of gene-function discovery to more genetically recalcitrant bioenergy crops such as Miscanthus. Differential gene expression profiles have been determined by comparing elongating and non-elongating maize internodes using maize microarrays. Key candidate genes predicted to fulfil crucial roles in cell wall biosynthesis and remodelling will be targeted for functional testing in models with the aim that results be translated into Miscanthus. New tools including the production of antibodies that specifically recognise ferulic acid dimers are also being developed (in collaboration with Prof. Paul Knox, University of Leeds and Prof. John Ralph, University of Wisconsin-Madison) as these can be used to study the temporal and spatial aspects of cell wall cross-linking mediated by ferulic acid dimers.
Summary
unavailable
Committee
Closed Committee - Genes & Developmental Biology (GDB)
Research Topics
Bioenergy, Crop Science, Industrial Biotechnology, Plant Science
Research Priority
X – Research Priority information not available
Research Initiative
X - not in an Initiative
Funding Scheme
X – not Funded via a specific Funding Scheme
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search