Award details

Functional Genomics of Aphid Adaptation to Plant Species

ReferenceBBS/E/T/000GP018
Principal Investigator / Supervisor Dr David Swarbreck
Co-Investigators /
Co-Supervisors
Institution Earlham Institute
DepartmentEarlham Institute Department
Funding typeResearch
Value (£) 80,808
StatusCompleted
TypeInstitute Project
Start date 03/03/2014
End date 31/03/2017
Duration36 months

Abstract

The green peach aphid (GPA) Myzus persicae is an agronomically important Pest worldwide. This aphid colonizes over 400 different plant species from more than 50 plant families and has developed resistance to all insecticides that are currently in use. Remarkably, a single GPA clone (consisting of genetically identical individuals) can colonize diverse plant species of several plant families, whilst the specialist pea aphid Acyrthosiphon pisum (for which the genome sequence is available) consists of genetically distinct races each of which colonizes different plant species of the family Fabaceae (or Leguminosae). The objective of this project is to identify mechanisms that have given GPA its impressive phenotypic plasticity. We will test the hypothesis that some gene families have adaptively expanded, offering GPA better protection to phytochemicals and insecticides. Given that genetically identical clones can exploit distinct host plants, we hypothesize that epigenetic regulation affects gene expression levels, and that certain gene members within these gene families are differentially up or down-regulated depending on exposure to host species and insecticides. This project tests an exiting new idea that adaptive gene duplication and Expansion of certain gene families has provided GPA with a versatile genetic toolbox allowing for a phenotypically plastic response through epigenetic regulation, thereby equipping this parasite with a vast evolutionary potential that could threaten future food security. We will use state-of-the-art genomics tools to compare aphid genomes and assess gene expression and DNA methylation profiles of GPA reared on diverse plant species and exposed to insecticides with different chemistries. We will then knock down the expression of specific GPA genes to study their effect on GPA adaptation to plants and insecticides. This project includes a translational component that will be taken forward in collaboration with Syngenta.

Summary

unavailable
Committee Not funded via Committee
Research TopicsCrop Science, Plant Science
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file