BBSRC Portfolio Analyser
Award details
An effector-detector domain in a rice immune receptor: towards structure-guided design of new disease resistance proteins
Reference
BBS/E/J/000CA616
Principal Investigator / Supervisor
Professor Mark Banfield
Co-Investigators /
Co-Supervisors
Institution
John Innes Centre
Department
John Innes Centre Department
Funding type
Research
Value (£)
59,368
Status
Completed
Type
Institute Project
Start date
01/08/2015
End date
31/03/2017
Duration
19 months
Abstract
The aims of this proposal are to define the molecular mechanisms underlying recognition of a rice blast effector protein family (AVR-Pik) by an unconventional domain incorporated into rice resistance proteins (Pik-HMAs) during evolution. Arms-race co-evolution, developed through direct protein-protein interaction, has resulted in an allelic series of AVR-Pik effectors and Pik resistance proteins that show deferential recognition patterns. This affects the capability of rice cultivars to respond to infection. Understanding the structural basis of recognition between these effectors and plant resistance proteins presents opportunities to engineer novel disease resistance specificities in rice, and perhaps other plant species. To deliver on our objectives, we propose a novel multi-disciplinary approach combining biochemistry, structural biology and plant biology, with the latter directly in the host pathosystem. Building on our preliminary data, which includes the first example of a structure of a plant pathogen effector bound to a plant intracellular immune receptor, we will interrogate the interactions between AVR-Pik effectors and Pik resistance protein domains in vitro and in planta. This will include both mutational analysis based on our structural work and also natural variants of AVR-Pik and Pik-HMA domains. Further, we have identified proteins called s-HMAs as putative susceptibility factors targeted by AVR-Pik effectors. Fascinatingly, these s-HMAs are sequence (and presumably structurally)-related to the resistance protein HMA domains. We will also characterise the interaction and activity of AVR-Pik effectors with these s-HMAs. Finally, we will use structure-guided mutagenesis to engineer Pik resistance proteins with novel, extended recognition specificities (to include as-yet unrecognised AVR-Pik alleles) and also transfer HMA-mediated recognition to NLRs of other plants.
Summary
unavailable
Committee
Not funded via Committee
Research Topics
Crop Science, Microbiology, Plant Science, Structural Biology
Research Priority
X – Research Priority information not available
Research Initiative
X - not in an Initiative
Funding Scheme
X – not Funded via a specific Funding Scheme
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search