BBSRC Portfolio Analyser
Award details
Genetic analysis of mechanisms linking cell wall integrity with growth control in Arabidopsis
Reference
BBS/E/J/000CA386
Principal Investigator / Supervisor
Professor Michael Bevan
Co-Investigators /
Co-Supervisors
Institution
John Innes Centre
Department
John Innes Centre Department
Funding type
Research
Value (£)
156,962
Status
Completed
Type
Institute Project
Start date
01/10/2009
End date
01/04/2012
Duration
30 months
Abstract
Sugars, as a resource of energy and structural components, regulate many important cellular processes. In photosynthetic and sessile organisms like plants, maintenance of sugar homeostasis requires complex regulatory mechanisms. In recent years, a pivotal role for sugar as signalling molecules has become apparent and many efforts have been done to study the molecular mechanisms of sugar regulation. Recently, isolation and characterisation of the high sugar response mutant 8 (hsr8) revealed a link between sugar sensing and cell wall integrity pathways. The hsr8 mutant was isolated because it displayed, in response to sugar levels, increased dark development, increased sugar-regulated gene expression, increased starch and anthocyanin levels and reduced chlorophyll content (Li et al, 2007). The hsr8 mutation was mapped in the gene encoding the first enzyme of the arabinose biosynthetic pathway. This suggests that the defect in the cell wall composition is sensed, transduced to the nucleus, and lead to altered glucose-responsive growth and development. Genetic analysis demonstrated that the Pleiotropic Regulatory Locus 1 (PRL1) was one component of this cell wall integrity pathway. The aim of this proposal is to use a combination of genetic and biochemical approaches to identify components of the cell wall integrity pathway and to establish the relationships with sugar-responsive and growth control pathways. The first strategy will consist in a genetic screen to isolate suppressors of the hsr8 mutation and the second strategy will aim to further investigate the role of PRL1 and its putative partners in the cell wall integrity pathway. In a context of decreasing oil resources, cell wall polysaccharides are expected to play an important role in biofuel production. The knowledge gained on sugar allocation and cell wall regulatory mechanisms will be important for guiding breeding and genetic engineering of cell wall optimised crops to facilitate biofuel production.
Summary
unavailable
Committee
Not funded via Committee
Research Topics
Bioenergy, Plant Science
Research Priority
X – Research Priority information not available
Research Initiative
X - not in an Initiative
Funding Scheme
X – not Funded via a specific Funding Scheme
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search