Award details

Molecular analysis of the natural variation in vernalization response of Arabidopsis accessions

ReferenceBBS/E/J/000CA344
Principal Investigator / Supervisor Professor Dame Caroline Dean
Co-Investigators /
Co-Supervisors
Institution John Innes Centre
DepartmentJohn Innes Centre Department
Funding typeResearch
Value (£) 121,511
StatusCompleted
TypeInstitute Project
Start date 17/03/2008
End date 16/03/2010
Duration24 months

Abstract

The model plant A. thaliana shows a wide range of genetic and phenotypic variation among natural accessions. Notably, adaptation of flowering time to specific environmental conditions is essential for reproductive success. This proposal will use our knowledge of the molecular basis of vernalization to uncover how Arabidopsis thaliana accessions have adapted to their environment. Analysis of flowering time and vernalization in Arabidopsis accessions provides a unique opportunity to link mechanistic understanding of a complex trait with an understanding of the fitness consequences of different alleles and their distribution within the population. The specific aims of this project will be 1) to fully define the molecular variation at FLC and linked genes underpinning the natural variation in accessions selected to represent a wide range of vernalization responses and 2) use the different accessions as a pool of 'natural mutants' to gain a better understanding of the basis of FLC regulation during vernalization. We will first confirm that FLC cis-elements are involved in this variation by a complementation analysis, followed by mix and match experiments to determine which region contains the cis-regulatory elements that account for the variation. We will also analyse the epigenetic changes at the FLC locus which result from the polymorphisms in the ciselements, as well as the role of other chromosome 5 candidates identified in a QTL analysis for the variation in vernalization response. In parallel, we will characterize important cis-elements in FLC required to initiate and maintain FLC repression during and after vernalization. We will then pick natural variants with polymorphisms in these cis-elements. Dissecting the molecular basis of adaptation is a major goal in evolutionary genetics and the results from this study are likely to provide important insights into adaptation relevant to many biological systems.

Summary

unavailable
Committee Closed Committee - Plant & Microbial Sciences (PMS)
Research TopicsPlant Science
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file