BBSRC Portfolio Analyser
Award details
Natural variation of growth control in Arabidopsis thaliana
Reference
BBS/E/J/000CA292
Principal Investigator / Supervisor
Professor John Doonan
Co-Investigators /
Co-Supervisors
Institution
John Innes Centre
Department
John Innes Centre Department
Funding type
Research
Value (£)
39,922
Status
Completed
Type
Institute Project
Start date
01/11/2006
End date
31/10/2008
Duration
24 months
Abstract
Standard genetic analysis in model organisms focuses on laboratory-induced mutations in single genes with large phenotypic effects. However, most of the variation that we see in natural populations is due to the sum of small effects, caused by naturally occurring alleles. Each allele (or variant gene) contributes to a particular trait and are known as quantitative trait loci (QTLs). Recent advances in genomic science has made these loci accessible for the first time in several model species, such as Arabidopsis. The primary scientific objective of this project is to define and identify loci responsible for natural variation in shoot apical meristem and leaf growth. The project is based on the recent discovery of geographic cline in leaf growth variation that is based on progressive increased cell size. Using a combination of cellular, molecular and bioinformatics techniques and recombinant inbred lines, the major QTLs will be determined and mapped. Identification of candidate genes and the affected pathways will provide insight into the adaptive significance of this characteristic. The project will provide advanced training in a number of research areas, including high resolution imaging, plant development, molecular biology and project design and management. The results will be of use to botanists, ecologists, cellular and molecular biologists and environmental scientists. They will provide insight into the interaction between the environment and the plant genome at the most basic level and will inform a wide variety of disciplines from environmental ecology to predicting ho plants might respond to climate change.
Summary
unavailable
Committee
Closed Committee - Genes & Developmental Biology (GDB)
Research Topics
Plant Science
Research Priority
X – Research Priority information not available
Research Initiative
X - not in an Initiative
Funding Scheme
X – not Funded via a specific Funding Scheme
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search