Award details

Arabidopsis GROwth Network integrating OMICS technologies - AGRON-OMICS

ReferenceBBS/E/J/000CA286
Principal Investigator / Supervisor Professor Michael Bevan
Co-Investigators /
Co-Supervisors
Dr Martin Trick
Institution John Innes Centre
DepartmentJohn Innes Centre Department
Funding typeResearch
Value (£) 1,298,766
StatusCompleted
TypeInstitute Project
Start date 01/11/2006
End date 30/04/2012
Duration66 months

Abstract

Plants are crucial to mankind as they supply food, chemicals, pharmaceuticals and renewable sources of materials and energy. Yet the processes by which they grow are poorly understood. Although some of the key factors involved in plant organ growth have already been identified, the circuitry that links the different levels of organisation (whole plant, organ, cell, molecular module, molecule) remains to be uncovered, fortunately, for the first time, techniques exist or can be developed to characterise a multicellular system exhaustively at all relevant levels. The main goals of AGRON-OMICS are (1) to survey systematically with an array of high throughput methods what are the molecular components driving growth in the cells of a developing Arabidopsis leaf, (2) to understand how these elements interact and coordinate their action across levels of organisation, and (3) to explain quantitative growth phenotypes at the molecular level through inference and mathematical MODELLING, followed by further experimentation. The partnership tackling these ambitious goals has two poles: BIOLOGY, the laboratories involved study the main known molecular pathways that regulate and implement leaf growth, including cell cycle, cell wall biosynthesis and remodelling, carbon and nitrogen metabolism, and photosynthesis; TECHNOLOGY, each of them offers a unique platform chosen to record variables describing Arabidopsis plant and growth, from the macroscopic analysis of leaf size and shape, to the in depth analysis of molecular cell components. AGRON-OMICS will establish the infrastructure necessary to organise its multidisciplinary research programme, then to integrate and interpret a wide range of data sets. With a strong emphasis on DISSEMINATION, the project will create knowledge used in industrial applications and will yield data, tools, resources and novel technologies that will be released to the research community at large as soon as practically feasible.

Summary

unavailable
Committee Closed Committee - Plant & Microbial Sciences (PMS)
Research TopicsPlant Science, Systems Biology
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file