Award details

FDP, a novel regulator of primordia fate

ReferenceBBS/E/J/000CA267
Principal Investigator / Supervisor Dr Philip Wigge
Co-Investigators /
Co-Supervisors
Institution John Innes Centre
DepartmentJohn Innes Centre Department
Funding typeResearch
Value (£) 178,219
StatusCompleted
TypeInstitute Project
Start date 24/10/2006
End date 12/11/2010
Duration49 months

Abstract

When plants grow they produce clumps of cells, called primordia, at their growing tips. All the above ground parts of the plant are ultimately derived from these primordia. Most plants grow vegetatively first, making stems and leaves, before initiating flowering. In the laboratory we study the development of a small plant called Arabidopsis. Although it is just a weed, Arabidopsis has many advantages for scientists to work on it, and we believe that what we learn about Arabidopsis will be relevant to many other plants. When arabidopsis grows, the first 15 or so primordia that are initiated are vegetative, that is they make leaves. After this time, if the conditions are right, the plant will make flowers instead of leaves. This developmental decision to make leaves or flowers is very important, and controlled by many factors. We want to understand more clearly how the switch from making leaves to making flowers works in plants. We have identified a mutant, fdp-1, where the switch is damaged, and as a result the plants make flowers much earlier than they should. Indeed, in the fdp-1 mutant, many genes are expressed where and when they shouldn't be. This gene therefore represents an exciting tool to understand in molecular terms aspects of how plants control the switch from making leaves to flowers in the primodia. We shall use a combination of different approaches to understand this problem. We wish to discover what other genes are affected by FDP. We will do this using microarrays. We also wish to discover the mechanism of FDP signaling, is it direct, or does it act through a repressor? Finally, we wish to do genetic screens to identify other genes involved.

Summary

unavailable
Committee Closed Committee - Genes & Developmental Biology (GDB)
Research TopicsPlant Science
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file