Award details

Gene expression during repair of Salmonella enterica serovar Typhimurium after exposure to cold atmospheric gas plasma: a transciptomic analysis

ReferenceBBS/E/F/00042585
Principal Investigator / Supervisor Dr Arthur Thompson
Co-Investigators /
Co-Supervisors
Institution Quadram Institute Bioscience
DepartmentQuadram Institute Bioscience Department
Funding typeResearch
Value (£) 120,700
StatusCompleted
TypeInstitute Project
Start date 01/03/2010
End date 29/02/2012
Duration24 months

Abstract

The demand for fresh or minimally processed food has grown rapidly in recent years. For this reason non-thermal processes have gained importance as a potential technology to replace the current thermal processing of food which results in extensive undesirable changes in quality attributes. An emerging technology is the use of nonthermal ionized gases also known as cold gas plasmas. The low operating temperatures of cold atmospheric plasmas makes them well suited for treating surfaces of foods contaminated with microorganisms. Although the use of cold atmospheric plasmas for microbial inactivation has been studied since the mid-1990s, the application of this technology to low-temperature food decontamination is much more recent. Although there are some studies on the effects of using nonthermal plasma in food processing, there has been no research performed with the objective of understanding the requirements of bacteria during the resuscitation of sublethal injury following exposure to gas plasma. The first aim of this project is to investigate the effect of cold atmospheric gas plasma on the inactivation of Salmonella enterica serovar Typhimurium by the collection of kinetic data during inactivation on abiotic surfaces, (such as packaging film) and biotic surfaces (such as vegetable tissues). A further aim is the measurement of the up-regulation of genes during resuscitation from damage inflicted by gas plasma. This will use a transcriptomic approach and a DNA microarray to identify time-dependent changes in the gene expression. In this way, we will focus on the important cellular events during the resuscitation of sublethally injured Salmonella Typhimurium cells. This will allow an understanding of the regulatory mechanisms involved during the resuscitation of sublethal injury following exposure to gas plasma. Identification of mechanisms to prevent resuscitation will enhance inactivation and will lead to improvement of the technique as an antimicrobial process

Summary

unavailable
Committee Not funded via Committee
Research TopicsMicrobial Food Safety, Microbiology
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file