BBSRC Portfolio Analyser
Award details
Chemical ecology of pest and beneficial arthropods : Understanding and exploiting semiochemical based mechanisms
Reference
BBS/E/C/00004945
Principal Investigator / Supervisor
Professor John Pickett
Co-Investigators /
Co-Supervisors
Institution
Rothamsted Research
Department
Rothamsted Research Department
Funding type
Research
Value (£)
764,095
Status
Completed
Type
Institute Project
Start date
01/04/2008
End date
31/03/2012
Duration
48 months
Abstract
Chemical ecology is the study of interactions between organisms as mediated by naturally produced chemical signals (semiochemicals) that transmit information both within and between species. Semiochemicals act by non-toxic mechanisms and the project investigates how these can repel pest insects and attract their natural enemies. The project defines the biological occurrence and role of semiochemicals. It focuses on interactions of pest insects with their hosts and beneficial insects and how blends of volatiles are used for host recognition by insects as well as avoidance of non-hosts. Insect neurophysiology, particularly relating to olfaction, is used to study the basis of host location. Our pest targets are primarily phytophagous insects that damage crops but also include haematophagous insects of medical and veterinary significance. Advanced analytical and electrophysiological techniques are used to study semiochemicals at the very low levels produced by plants and insects and specialised bioassays determine their effects on insect behaviour and plant defence. Plant hosts of phytophagous insects are not passive victims and possess natural defence mechanisms that act directly against pests and indirectly by tritrophic interactions with predators and parasitoids. Thus plant defence can be induced or primed by treatment of plants with activator semiochemicals. Primed plants elicit accentuated and more rapid defence responses when subsequently attacked but defence is not constitutively upregulated. Semiochemicals are deployed in the field after preliminary studies in the laboratory. Strategies for utilising semiochemicals for insect pest management at the field level include switching on plant defence with plant activators, manipulation of host location cues in 'push-pull' systems, deployment of aphid alarm pheromone signals and development of trapping systems based on attractive semiochemicals.
Summary
unavailable
Committee
Closed Committee - Agri-food (AF)
Research Topics
Crop Science, Plant Science
Research Priority
X – Research Priority information not available
Research Initiative
X - not in an Initiative
Funding Scheme
X – not Funded via a specific Funding Scheme
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search