BBSRC Portfolio Analyser
Award details
MRC DTG studentship: Regulation of an axonal survival factor
Reference
BBS/E/B/0000M739
Principal Investigator / Supervisor
Professor Michael Philip Coleman
Co-Investigators /
Co-Supervisors
Institution
Babraham Institute
Department
Babraham Institute Department
Funding type
Research
Value (£)
113,932
Status
Completed
Type
Institute Project
Start date
01/10/2009
End date
30/09/2013
Duration
48 months
Abstract
In a normally functioning neuron, the cell body has to supply its axon with all the materials it needs to keep it healthy. This complex logistical process breaks down completely after injury and often becomes compromised in neurodegenerative diseases. When this happens, the isolated axon degenerates. Whilst isolated axons clearly will not be able to exist indefinitely without replenishment of many important cargoes delivered from the cell body, those that are short-lived will be depleted first, so loss of short-lived proteins is likely to act as a stimulus for degeneration. Using clues from a mutant mouse whose axons are protected from degeneration, we have identified delivery of Nmnat2, a protein with an important enzyme activity, as a limiting factor for axon survival. Importantly, Nmnat2 is very short-lived and its levels decline rapidly in injured axons before they start to degenerate. Without it, even uninjured axons degenerate by a similar mechanism, consistent with loss of this protein being a natural stimulus for axon degeneration. This is likely to have important therapeutic implications. The aims of this project are to understand how the Nmnat2 survival molecule is delivered to axons by the sophisticated molecular machinery in axons, that transports molecules over distances up to a metre long. Like any supply chain, this one dimensional delivery of protein is vulnerable to blockage and axonal degeneration, leading to diseases such as motor neuron disease and Alzheimer’s disease. If we can deliver more of this protein into axons and keep it stable for longer we may be able to delay or prevent such diseases.
Summary
unavailable
Committee
Not funded via Committee
Research Topics
Ageing, Neuroscience and Behaviour, Pharmaceuticals
Research Priority
X – Research Priority information not available
Research Initiative
X - not in an Initiative
Funding Scheme
X – not Funded via a specific Funding Scheme
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search