Award details

Optical Fluorescence Micro and Nanoscopy to determine and quantify functional molecular interactions and dynamics across time and length scales

ReferenceBB/V019791/1
Principal Investigator / Supervisor Dr Jorge Bernardino de la Serna
Co-Investigators /
Co-Supervisors
Professor Marina Botto, Dr Andreas Bruckbauer, Dr Edward Cohen, Professor Charles Coombes, Dr Marco Di Antonio, Professor Aylin Hanyaloglu, Dr Beth Holder, Professor Marina Kuimova, Professor Clare Lloyd, Professor Cristina Lo Celso, Professor Paul Matthews, Dr Tristan Rodriguez, Professor David Rueda, Professor Guy Rutter, Professor Molly Stevens, Dr Alejandra Tomas
Institution Imperial College London
DepartmentNational Heart and Lung Institute
Funding typeResearch
Value (£) 524,275
StatusCompleted
TypeResearch Grant
Start date 01/07/2021
End date 30/06/2022
Duration12 months

Abstract

This proposal is to provide a new state-of-the-art microscope for Imperial's Facility for Imaging and Light microscopy (FILM) at the Hammersmith Hospital/White City (HHWC) campuses. The requested equipment would allow us to achieve unprecedented spatial and temporal resolution of molecular events in live cell imaging. The equipment is a perfect combination between confocal microscopy and stimulated emission depletion (STED) microscopy with highly sensitive photon counting detectors allowing for time-resolved fluorescence lifetime imaging and single-molecule fluorescence spectroscopy. This microscope will enable us to determine spatial localisation and distribution of functional molecules down to the nanoscale and quantify lipid-protein and protein-protein interactions and its dynamics at the cell-cell and sub-cellular level. Overall, enabling fundamental insights into membrane trafficking, organelle dynamics, exocytosis, viral/bacterial infection and entry, cell-cell communication and cellular ensemble organisation. This microscope will enhance Imperial College research in several BBSRC strategic priority areas: collaborative research with users; combating antimicrobial resistance; data driven Biology; nutrition and health; healthy ageing across the life course; 3Rs in research using animals; synthetic biology and method development for the biosciences.

Summary

Light microscopy forms a bedrock of modern research in bioscience and medicine, allowing processes to be examined across scales from individual molecules up to living organisms. Here we propose to acquire a high-end recently released system to enable us to perform state-of-the-art "super resolution" microscopy, with the possibility to perform time-resolved imaging at molecular level. This will allow us to study events in cells with unparalleled spatial and temporal resolution. Critically, these systems will permit BBSRC-funded and other researchers to drive research projects understanding the fundamental mechanisms driven by molecules, its interactions and dynamics at the single cellular level up to collective functional assemblies of cells. The microscope will be part of Imperial's "Facility for Imaging and Light microscopy" (FILM) and accessible to all members of College, as well as local, national and international collaborators.
Committee Not funded via Committee
Research TopicsX – not assigned to a current Research Topic
Research PriorityX – Research Priority information not available
Research Initiative Advanced Life Sciences Research Technology Initiative (ALERT) [2013-2014]
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file