BBSRC Portfolio Analyser
Award details
Enhanced productivity and functionality of Modified Ribosomally Produced Peptides (M-RIPPs)
Reference
BB/M028526/1
Principal Investigator / Supervisor
Professor Marcel Jaspars
Co-Investigators /
Co-Supervisors
Dr Wael Houssen
Institution
University of Aberdeen
Department
Chemistry
Funding type
Research
Value (£)
462,896
Status
Completed
Type
Research Grant
Start date
01/09/2015
End date
31/10/2018
Duration
38 months
Abstract
Ribosomally Produced Peptides (RIPPs) as a biosynthetic class contains many different families such as the cyanobactins, lanthipeptides, proteusins and lasso peptides amongst others. They have a range of biological activities and have a common biosynthesis in which a the core peptide, a small sequences within a larger precursor peptide is modified by tailoring enzymes. The modified core peptide is freed from the leader and additional signal sequences and often undergoes further modification (macrocycle formation, heterocycle oxidation, O/N prenylation) to produce the final modified peptide. The common RIPP biosynthetic pathway indicates that it should be possible to apply multiple types of chemical tailoring from different RIPP families to core peptides, thus generating hybrid molecules with features from multiple RIPPs. This project aims to generate such modified RIPPs (M-RIPPS) in vivo and overcome several barriers to their scaleable production. We will incorporate modifications common in cyanobactins (heterocycles, macrocycles, O/N prenylation), lanthipeptides (lanthionine and labionin bridges) and lass peptides. We will use this methodology to generate libraries of unique compounds with novel bioactivities. To assist with M-RIPPS that may not be producible using standard expression systems, we will also use one alternative expression system. We will scale up production to 1-3 L scale and improve downstream processing using a variety of methods, including the incorporation of a cyclic peptide exporter in the producing cells and cultivating them in a biphasic system to allow easy compound extraction and subsequent purification. The final step is technical marketing in consultation with big Pharma with a view to establishing a spinoff company based on this technology.
Summary
Ribosomally Produced Peptides (RIPPs) are widely recognised as one of the most promising classes of compounds with the potential to treat many diseases including infection, cancer & inflammation. They are of great interest to the pharma industry, but are extremely costly to produce/modify - even in milligram amounts. Through the utilisation of cutting-edge techniques in combinatorial synthetic biology, this project sets out to achieve a world first; namely, to produce bespoke libraries of Modified RIPPs (M-RIPPs) in vivo and in sufficient quantities to permit drug discovery screening. The project combines the fundamental knowledge of the natural processes involved in RIPP biosynthesis of the two premier UK academic groups active in the field with the applied expertise in industrial biosynthesis of a leading UK IB company. It will deliver a versatile yet robust technology platform for the production of M-RIPPs in vivo that will be transferred to a spinoff company to be formed around 18 months after project start.
Impact Summary
As described in proposal submitted to IUK
Committee
Research Committee A (Animal disease, health and welfare)
Research Topics
Industrial Biotechnology, Microbiology, Pharmaceuticals, Synthetic Biology
Research Priority
X – Research Priority information not available
Research Initiative
Industrial Biotechnology Catalyst (IBCAT) [2014-2015]
Funding Scheme
X – not Funded via a specific Funding Scheme
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search