Award details

Using flux control analysis to improve oilseed rape

ReferenceBB/L009420/1
Principal Investigator / Supervisor Dr Tony Fawcett
Co-Investigators /
Co-Supervisors
Dr Emma Wallington
Institution Durham University
DepartmentBiosciences
Funding typeResearch
Value (£) 374,511
StatusCompleted
TypeResearch Grant
Start date 01/05/2014
End date 30/06/2017
Duration38 months

Abstract

unavailable

Summary

unavailable

Impact Summary

Beneficiaries from this project will be industry, the academic community and the general public. Oil crops are one of the most important features of agriculture in the UK, Northern Europe and North America and are of primary importance for food security. In addition, the possibilities of using rapeseed oil as a sustainable source of petrochemical substitutes are becoming better known. With the tight limits on agricultural land, most people realise that understanding how to maintain (or enhance) crop yields is vital; in this regard, there is both academic and commercial interest in understanding and alleviating the constraints in metabolic pathways to produce commercially valuable crop products. Our previous work about flux control analysis has been noticed by industry and, indeed, partly funded therefrom (see supporting letters attached). Clearly, increases in crop yields are an important target for the agrochemical industry and the demonstrated elevated yields for several new transgenic lines in oilseed rape are already promising. In this project, defining the impact of increasing the activity of individual enzymes and two- and three-gene stacks will allow us to move forward immediately in a progressive way to inform future crop modifications. As an example, field trials of our first transgenic rapeseed line, with increased diacylglycerol acyltransferase, gave an 8% increase in oil yield. At current market prices (Dec. 2012) this is worth about £980M for rape oil. By the end of the project we will have identified new target enzymes and will have transgenic plants available for field trials. We will discuss these results and their potential commercialization, initially, with our existing industrial contacts, utilising the expertise within the Technology Transfer teams of both Cardiff and Durham Universities. It is likely that commercialization of this research would be on a medium (5-10 years) timescale. The combination of biochemistry, molecular biology and systemscontrol analysis is a strong one which will give fundamental understanding about the regulation of a primary pathway of metabolism. The results of the work will be reported at both national and international conferences and the significance of the work is likely to continue to attract invitations to important international meetings. This research will have an impact outside of the lipid field, as it will illustrate a systematic way of increasing flux through a metabolic pathway. The project would involve researchers in state-of-the-art techniques, leading to highly skilled and trained individuals. Since the project integrates biochemistry/molecular biology with systems modelling approaches, the biologists will benefit from practical knowledge of how mathematics can assist in biological research. These types of integrated skill sets acquired by the researchers are essential for a highly trained and flexible workforce that will be required to deliver the KBBE and contribute to future economic development and associated social benefits. Such individuals also enhance the skills and knowledge base available and, therefore, further contribute to the UK's attractiveness for international collaboration and for outside investment in R&D. We are strong advocates of discussing the results of research with the general public. For example, Harwood has already written invited articles for popular science, given interviews for radio and TV and presented talks about the work for local science societies and in outreach activities for schools. These avenues will be followed also for this project and, in addition, we will utilise the Innovation Farm at NIAB in the third year of the project to disseminate the results. This will enable us to engage in a discussion with members of the public about the potential benefits of GM crops.
Committee Research Committee B (Plants, microbes, food & sustainability)
Research TopicsCrop Science, Industrial Biotechnology, Plant Science
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file