Award details

Genetic control of the tomato leaf miner Tuta absoluta

ReferenceBB/I015620/1
Principal Investigator / Supervisor Professor Sebastian Shimeld
Co-Investigators /
Co-Supervisors
Dr Luke Alphey
Institution University of Oxford
DepartmentZoology
Funding typeSkills
Value (£) 91,932
StatusCompleted
TypeTraining Grants
Start date 01/10/2011
End date 30/09/2015
Duration48 months

Abstract

unavailable

Summary

The tomato leafminer, Tuta absoluta (TLM, a species of moth), is a major pest of tomatoes in South America and, since 2006, Europe and North Africa. Crop damage is caused by TLM larvae feeding on the foliage and fruit, and results in significant economic losses in many countries. Moreover, affected countries are rapidly increasing in number as the pest spreads through Europe and the Mediterranean region. Current control activities largely rely on insecticide use. Unfortunately, TLM is developing resistance to most front-line insecticides, and other control methods have failed to provide adequate control. TLM shows suitability for control by the sterile insect technique (SIT), but several limitations of the conventional SIT approach limit its widespread utilisation [1-2]. SIT relies on the mass rearing, sterilisation using irradiation and release of large numbers of the sterile males over the target area [1, 3]. Released sterile males mate with wild females, reducing the reproductive potential of the wild population and so causing a reduction in the wild population in the subsequent generation. If enough sterile males are released for a sufficient time, the target population will collapse. Conventional SIT relies on irradiation to sterile the target pest species. However, the ionising radiation required to induce sexual sterility in Lepidoptera often impairs mating behaviour to such an extent that the males are not viable within an SIT programme [4-5]. Furthermore, there is currently no genetic sexing mechanism, which means males and female F1 progeny are both reared within the programme facilities, increasing production costs and decreasing effectiveness as sterile females 'distract' sterile males from seeking wild females [6-7]. Oxitec's core proprietary technology, known as RIDL (Release of Insects with Dominant Lethal), first demonstrated in Drosophila [8] and now being applied to real pest insects [9-10], provides a viable means of overcoming the limiting constraints of SIT for TLM. The student will develop RIDL strains of diamondback moth that replace the need for sterilisation by irradiation and also act as a genetic sexing mechanism [11]. The proposed research will benefit from the unique expertise within Oxitec of generation of RIDL strains of other pest species including pink bollworm and Medfly, our unique ability to transform TLM, and the extensive experience of insect molecular genetics and transformation in both the academic and company laboratories. Genetic engineering of insect pests is in its infancy (e.g. first transformation of any moth was published as recently as 2000 [12]), and this project is at the cutting edge of applied insect genetics. Our experience with other insects now enables us for the first time to address these issues with a realistic hope of developing a novel, sustainable, low-environmental-impact pest control strategy for a pest of great economic importance. References 1. Dyck et al, eds. Sterile Insect Technique: principles and practice in area-wide Integrated Pest Management. 2005, Springer 2. IAEA, 'Improvement of Codling moth SIT to facilitate expansion of field application.' 2000, IAEA: Vienna, Austria. p. 33 3. Knipling, E., J. Econ. Entomol., 1955. 48:459 4. Robinson, A., Mut Res, 2002. 511:113 5. Bloem, K.A., et al in Dyck, et al (eds) 2005, Springer 6. Rendón, P., et al. J Econ. Entomol., 2004. 97:1547 7. Marec, F., et al.. J. Econ. Entomol., 2005. 98: 248 8. Thomas, D.D., et al. Science, 2000. 287:2474 9. Gong, P., et al. Nat. Biotech., 2005. 23:453 10. Fu, G., et al. Nat. Biotech, 2007. 25:353 11. Alphey, L., (2008) in 'Transgenesis and the management of vector-borne disease', Aksoy (ed) Landes Bioscience 12. Peloquin, J.J., et al. Insect Mol. Biol., 2000. 9:323
Committee Not funded via Committee
Research TopicsX – not assigned to a current Research Topic
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeTraining Grant - Industrial Case
terms and conditions of use (opens in new window)
export PDF file