BBSRC Portfolio Analyser
Award details
Conformational states of membrane proteins: Technology development for bioscience
Reference
BB/H017917/1
Principal Investigator / Supervisor
Professor James Naismith
Co-Investigators /
Co-Supervisors
Professor Glen Alfred Cottrell
,
Dr Huanting Liu
,
Professor Olav Schiemann
Institution
University of St Andrews
Department
Chemistry
Funding type
Research
Value (£)
1,404,070
Status
Completed
Type
Research Grant
Start date
01/10/2010
End date
31/01/2016
Duration
64 months
Abstract
Membrane proteins undergo significant conformational changes during their gating. Quantitating these changes is a significant challenge but is vital to our understanding of the molecular biology. We will use EPR in combination with site directed spin labeling to measure these changes. Unpaired electron spins interact with each other over long distances. This can be used to derive the distance between the spins via measurement of the dipolar coupling. For distances up to 15 Å this can be achieved with conventional continuous wave (cw) EPR methods, for distances in the critical 15 to 80 Å regime, pulsed techniques as Pulsed Electron-Electron Double Resonance (PELDOR or DEER) are the method of choice. In the PELDOR time trace, a fixed distance manifests itself as a periodic modulation whose frequency can be converted back into the distance (implemented in the program DEERAnalysis2008). Since the PELDOR experiment is not a single molecule experiment, random intermolecular spin-spin coupling occurs superimposing an exponential decay which has to be removed. However, for this ill-posed back transformation to work reliably and with high precision it is crucial to obtain PELDOR data with observable modulation. We identified several in steps in sample preparation and processing that improve signal to noise and we have obtained preliminary data showing that we can make accurate measurements. We will label the ion channels MscS, MscL, ASIC1a and FaNaC to derive distance measurements in the different conformational states that accompany the closed to open structural transitions and also make meausrements of other crucial states, such desensitisation and inactivation. Making such measurements requires the analysis of selected channel mutants. The PELDOR sudies will be complemented with state-of-the-art measurements of the activity of the mutant channels in the laboratories of the applicants, ensuring that no significant peturbations of structure arise from mutagensis.
Summary
Although life requires water, life must be able to control the flow of water. As an example, if a person (70% water) jumps into a swimming pool they do not dissolve like a sugar cube. This is because we have a barrier between the swimming pool water and the water inside our cells. This barrier is the membrane or lipid bilayer, it is made of oily compounds. The bilayer is essential it keeps important things in and poisonous things out. All organisms have these bilayers. On their own bilayers would simply block all transport, thus we could not take up nutrients nor could we get rid of waste. Proteins embedded in this membrane are thus needed to act as gate keepers to control movements of ions, nutrients, waste and proteins across the lipid bilayer. These proteins are also the telephone connections between one cell and another. The nerve impulse in humans transmits trigger release of a transmitter (small chemical) from the neuron. The transmitter interacts with another cell by promoting some change in the cell, each cell uses membrane proteins as part of this process. Membrane proteins that control ions movement across the bilayer are called ion channels. They must, like a tap, be able to fully closed to stop leaks but they must also open when required. Many diseases are caused by membrane proteins not working properly. If we are to treat these diseases we need to understand how membrane proteins work. Protein crystallography has transformed our understanding of proteins. It allows us to see every atom in the structure and understand a great deal about the function of the protein. This scientific approach has led to the development of many new drugs. However, this technique can only see one state of the protein at a time. We propose to develop a new approach that will allow us to see in detail exactly how membrane proteins move between the open and closed states. We have chosen to study the pain receptors in humans and the osmotic stress survival proteins in bacteria. These are important systems with obvious medical benefits, treatment of pain and design of new antibiotics.
Impact Summary
Who will benefit from this research? This research will benefit the biological and medical research communities in both industry and academia. Membrane proteins are a key target for the pharmaceutical industry and UK has a strong record in pharmaceutical and biotechnology research. The academic community recognizes that membrane biology is underdeveloped and holds significant opportunities for future research. How will they benefit from this research? We propose to develop a new integrated approach combining PELDOR (an emerging EPR technology), X-ray crystal analysis, electrophysiology and molecular biology to characterize the conformational states of membrane proteins as they change during function. The genetic basis of over 70% of major diseases has been shown to result from a defect in one or more membrane proteins. Bacterial membrane systems have provided novel targets for therapeutics and it is in this sector of bacterial and fungal pathogenesis that new targets are being discovered as a consequence of more rapid advances in the characterization of membrane proteins. Further, many current therapeutics target membrane proteins as part of their action. For example and directly relevant to this proposal many treatments for high blood pressure (a common ailment) block the sodium channel ENaC. These 'old' drugs were developed before there was any molecular understanding of the channel. There is clear need for new more effective therapies for many diseases and new drugs requiring new scientific understanding. It is likely that the majority of such new drugs will target membrane proteins and their processes. In addition, membrane proteins are also important sensors, diagnostics and biotransformation platforms. Membrane protein biology and biochemistry is therefore an important and impactful area. This proposal will lead to a significant increase in the scientific understanding of ion channel function, transmembrane signaling and membrane transport. By doing this work in the UK we will ensure the impact of the scientific advancement is realized by UK Biotech and Pharmaceutical Industry. What will be done to ensure that they benefit from this research? We will engage with the immediate beneficiaries, (The science community and Health Care Industry) through a mixture of public presentations at companies, professional conferences and to the general public. We will also host workshops at St Andrews in structural biology, membrane functions and in EPR. The structural biology workshop has been running in St Andrews since 1999 and every two years up to 40 PhD students from across the UK come to this week long residential course. The course covers experimental and detailed theory. The two last advanced European Summer Schools on EPR were co-organized by Schiemann (funded by the EU) and trained graduate scientists from across the EU in modern EPR techniques. Such courses ensure the widespread dissemination of new techniques. We will promote public engagement by generating press releases for the University press offices. Our University web sites are an excellent method for the general public to see what research is being carried out with BBSRC funding. We will make ourselves available to international, national and local media organizations to talk about the work. We will manage the regular meetings of the groups involved such that in addition to the science focus, they will also explore ways of communicating the impact of the science to the widest possible audience. The impact of the work will be spearheaded by Liu, Schiemann, Booth and Naismith. The project requires the collaboration of Professor Eric Linguelia (CNRS, Valbone, France), Dr Graham Smith (St Andrews) and Professor Mark Sansom (Oxford). We will collaborate with the UK Membrane Protein Laboratory to ensure the widest possible dissemination of the results to the community. We will also distribute experimental materials (clones and reagents) to other labs.
Committee
Research Committee C (Genes, development and STEM approaches to biology)
Research Topics
Structural Biology
Research Priority
X – Research Priority information not available
Research Initiative
X - not in an Initiative
Funding Scheme
X – not Funded via a specific Funding Scheme
Associated awards:
BB/H017402/1 Conformational states of membrane proteins: Technology development for bioscience
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search