Award details

OMSys: Towards a systems model of a bacterial outer membrane

ReferenceBB/H000267/1
Principal Investigator / Supervisor Professor Mark Sansom
Co-Investigators /
Co-Supervisors
Dr Veatriki Nikolaidi
Institution University of Oxford
DepartmentBiochemistry
Funding typeResearch
Value (£) 331,968
StatusCompleted
TypeResearch Grant
Start date 01/12/2009
End date 31/05/2013
Duration42 months

Abstract

In this project we aim to develop a model of a bacterial outer membrane (OM), linking biomolecular simulations through to computational systems biology approaches. Such an approach to modelling an OM must be multi-scale i.e. it must embrace a number of levels: (i) atomistic level modelling of protein/ligand interactions; (ii) coarse-grained modelling of both outer membrane proteins and lipoproteins and of their lipopolysaccharide/phospholipid/peptidoglycan environment; and (iii) higher level e.g. agent-based modelling of the interplay of multiple components within the OM as a whole. The different levels of description will be integrated to enable predictive modelling of bacterial OMs in order to explore the roles of OM changes in e.g. antibiotic resistance and envelope stress responses.

Summary

Many bacteria have an outer membrane which is the interface between the cell and its environment. The components of this membrane are well studied at an individual level, but there is a need to model and understand the outer membrane as a whole. In this project we aim to develop such a model of a bacterial outer membrane, linking computer simulations of the component molecules through to a more 'systems biology' approach to modelling the outer membrane as a whole. Such an approach to modelling an OM must be multi-scale i.e. it must embrace a number of levels ranging from atomistic level modelling of e.g. the component proteins through to higher level 'agent-based' modelling of the interplay of multiple components within the outer membrane as a whole. The different levels of description will be integrated to enable predictive modelling in order to explore the roles of outer membrane changes in e.g. antibiotic resistance.
Committee Research Committee C (Genes, development and STEM approaches to biology)
Research TopicsMicrobiology, Systems Biology
Research PrioritySystems Approach to Biological research, Technology Development for the Biosciences
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file