Award details

Role of MSK in chromatin remodelling underlying stress-induced transcriptional induction in dentate gyrus granule neurons and behavioural adaptation

ReferenceBB/F000510/1
Principal Investigator / Supervisor Professor Johannes Reul
Co-Investigators /
Co-Supervisors
Miss Yalini Chandramohan, Professor James Uney
Institution University of Bristol
DepartmentHenry Wellcome LINE
Funding typeResearch
Value (£) 339,017
StatusCompleted
TypeResearch Grant
Start date 01/04/2008
End date 31/03/2011
Duration36 months

Abstract

Exposure to a psychologically stressful event requires, in addition to generation of the acute stress response, cognitive processing in order to learn from it and thus to be able to respond more appropriately in case of future recurrences. Insight into the molecular and cellular mechanisms underlying stress coping and stress processing in the brain is clearly vital for the development of strategies to improve the quality of life of humans and animals. We have found that, in the case of a learned behavioural response to stress in rats and mice, this process involves chromatin remodelling (driven by phosphorylation and subsequent acetylation of histone H3) to induce transcriptional activation in dentate gyrus neurons in the limbic brain which is mediated through concurrent stimulation of glucocorticoid receptor (GR) and NMDA receptor (NMDA-R)/MAPK/ERK signalling mechanisms. Moreover, signalling to the chromatin was disrupted by genetic deletion of the principal histone H3 kinase Mitogen- and Stress-activated Kinase (MSK). Of relevance, MSK is also a potent CREB kinase. We hypothesise that MSK is a key mediator of psychological stress-activated GR and NMDA/MAPK/ERK signalling to the chromatin that results in transcriptional activation and encoding of memory of the stressful event. In these processes, (1) GR and ERK concertedly activate MSK which then phosphorylates histone H3 (P-H3); (2) also, the activated MSK through phosphorylation of CREB and subsequent recruitment of histone acetyl transferase (HAT) activity indirectly drives the acetylation of P-H3 (PAc-H3); and (3) the PAc-H3-evoked chromatin remodelling results in activation of gene expression that is critical for the memory formation associated with the stressful event. To test this hypothesis we will use state-of-the-art inducible tissue-specific mutant mice and lentiviral-driven RNA interference technology in combination with neuroanatomical, immunohistochemical and behavioural analyses.

Summary

Stress is part of everybody's every day life. We need to respond appropriately to stressful events and normally we learn from them to cope better the next time they are imposed on us. These learning and adaptation processes are taking place in the brain. These processes must work properly as improper functioning can cause illness such as depression and anxiety. However, we currently do not fully know how the brain learns from stressful events. We have recently discovered that after stress certain molecular processes ('histone modifications') are taking place in the nucleus of nerve cells which we think are crucial for the expression of certain genes necessary for the adaptation of these cells to the stressful event. These processes are triggered by certain hormones which are released within the brain or by hormone glands and that bind to receptors on the cell surface or inside these cells. The hormones do not trigger the molecular processes in the nucleus directly but do so via so-called signalling molecules. Our proposal aims to identify those signalling molecules and determine how these molecules act in order to gain insight into how nerve cells 'learn' from stressful events.
Committee Closed Committee - Animal Sciences (AS)
Research TopicsNeuroscience and Behaviour
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file