Award details

Pig genome annotation and analysis

ReferenceBB/E010520/1
Principal Investigator / Supervisor Professor Alan Archibald
Co-Investigators /
Co-Supervisors
Dr Andrew Law
Institution The Roslin Institute
DepartmentGenetics and Genomics
Funding typeResearch
Value (£) 295,043
StatusCompleted
TypeResearch Grant
Start date 14/06/2007
End date 13/05/2008
Duration11 months

Abstract

The genome represents a complete description of an organism. However, to understand the functioning of the genes and regulatory elements, and to design sensible molecular biological experiments to test hypotheses, the genome sequence must be related to the extant functional data for that organism. We propose to annotate and analyse the sequence being generated by the International Pig Genome Sequencing Project. We will use the well established Ensembl system as the main tool for storage, management and dissemination of pig genome data. Pig genome sequencing is currently funded to 3-4x coverage from mapped clones, with two chromosomes at higher coverage. Experience from other low coverage genomes, such as cow, rabbit and armadillo is that this coverage will minimally provide an effective representation of exons, which can then be assembled into genes using a guide genome. By definition this approach cannot resolve lineage specific expansions in the pig genome. However, with this more clone based strategy there will be new opportunities for combining both assembly and annotation strategies to leverage more information out of a 3x assembly. We will integrate the pig genome sequence with diverse pre-existing data sets, including SNPs, ESTs and quantitative trait loci (QTL). We will integrate the sequence with maps (genetic, physical) and physical resources (clones, microarrays) providing a seamless route for interrogation and development of experimentation tools. Finally computational approaches, integrating the above resources and also leveraging the comparative genomics potential in the mammalian clade will be used to analyse and present the genome in a user friendly format. An annotated pig genome sequence will dramatically accelerate research on the pig as an important animal for agriculture and human biology. Our aim is to make the pig genome sequence maximally useful by delivering an annotated sequence of the highest quality in a user friendly manner.

Summary

We propose to provide state of the art analysis and annotation of the pig genome sequence being generated by the International Pig Genome Sequencing Project. We will make the annotated genome sequence accessible on the Web through the Ensembl site at http://www.ensembl.org . The pig genome is the entire DNA sequence of the pig which defines all the biological molecules that make up a pig. By acquiring, managing and annotating the pig genome sequence one accelerates research for both pig biology and for mammalian biology. Impact on pig biology: Because of the extensive selective breeding which has occurred during domestication, there are a considerable number of breed or line-specific features, from fat/muscle ratios, litter size to skin colour. These features can be mapped genetically into broad regions of the genome, but the final identification of the genes responsible and the causal genetic variation is very complex. The availability of a well-annotated pig genome sequence with links to other data sources, especially those on phenotypes such as growth, carcass composition or responses to infectious disease would provide a dramatic boost to the identification of these causative genes. Impact on Human biology: The pig genome, as with all mammals has diverged relatively recently from the human lineage. This allows us to look for the effect of evolution in the genome. In comparing genome sequences both the similarities and the differences are informative. Sequences that are conserved across multiple species probably represent essential coding or regulatory sequences. Sequences that differ across species and show evidence of rapid evolutionary change can be important determinants of species survival, including reproductive fitness and the ability to respond to infectious disease. Thus, the comparative genome sequence analyses that we will perform will help us understand mammalian - and hence human - biology, including disease processes.
Committee Closed Committee - Genes & Developmental Biology (GDB)
Research TopicsAnimal Health
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file