BBSRC Portfolio Analyser
Award details
Mapping lipid and detergent binding sites on the surface of membrane proteins
Reference
BB/E008720/1
Principal Investigator / Supervisor
Professor Richard Cogdell
Co-Investigators /
Co-Supervisors
Professor Neil William Isaacs
,
Professor Pavel Kocovsky
,
Professor Andrei Malkov
Institution
University of Glasgow
Department
Institute of Biomedical & Life Sciences
Funding type
Research
Value (£)
577,945
Status
Completed
Type
Research Grant
Start date
01/01/2007
End date
30/06/2010
Duration
42 months
Abstract
There is a great deal of current interest in trying to understand the molecular details of how membrane proteins interact with lipids. It is frustrating therefore that many crystal structures of membrane proteins so reveal non-proton electron densities around the protein's hydrophobic surfaces but usually only part of the lipids or detergents are seen, and so these electron densities cannot be unambiguous assigned. In this proposal we will use a novel approach to solve the problem by co-crystallising with heavy-duty atom tagged lipids and detergents. The extra scattering power of the heavy atom will allow us to definitively assign these electron densities to either lipids or detergents, and to study the details of their binding sites. Use of these heavy atoms tagged lipids and detergents could in principle allow the 'phases' to be solved and to provide a new general route to 'phasing' crystal structures of membrane proteins. We will fully explore this possibility.
Summary
When membrane proteins are crystallised and X-ray crystallography is used to determine their 3D structure, non protein molecules can often be seen surrounding their hydrophobic regions. These molecules could either be lipids or detergent molecules, that were used to isolate the proteins from their membranes. Unfortunately though, it is usually the case that only parts of these molecules are 'seen', due to disorder, and so it is not possible to decide which ones are which. We are going to use a novel method which will allow us to unambiguously resolve this identification issue. We will synthesise heavy atom tagged lipids and detergents and add these to the crystals. The extra X-ray scattering power of these heavy atoms will allow us to clearly distinguish which is which. The results of this study will be very useful in helping to understand the molecular details of how membrane proteins interact with lipids. In many cases these interactions are actually essential for the protein to function correctly. In X-ray crystallography in order to solve 3D structures the diffraction data must be combined with the 'phase' information. These heavy atoms 'tagged' lipids and detergents will be tested to see if they can provide a new general method for 'phasing' diffraction data with crystals of membrane proteins.
Committee
Closed Committee - Biomolecular Sciences (BMS)
Research Topics
Structural Biology, Technology and Methods Development
Research Priority
X – Research Priority information not available
Research Initiative
X - not in an Initiative
Funding Scheme
X – not Funded via a specific Funding Scheme
I accept the
terms and conditions of use
(opens in new window)
export PDF file
back to list
new search