Award details

Mass-flowering crops: cost or benefit to bumblebees and wild flower pollination?

ReferenceBB/E001491/1
Principal Investigator / Supervisor Professor Juliet Osborne
Co-Investigators /
Co-Supervisors
Institution Rothamsted Research
DepartmentAgro-Ecology
Funding typeResearch
Value (£) 283,334
StatusCompleted
TypeResearch Grant
Start date 02/04/2007
End date 01/04/2010
Duration36 months

Abstract

The project will focus on a 15 x 15 km sq. of arable farmland in Hertfordshire. Obj A: Determine whether mass-flowering crops (MFCs) affect the growth of colonies of long and short-tongued bumblebee species. We will perform genetic analysis on samples from bees caught on or in the margins of oilseed rape, field bean and cereals (30 sites). Samples of B. lapidarius and B. pascuorum queens will be taken in the spring, and workers in May and July. Molecular markers will be used to determine relatedness, and from this we will estimate how many colonies are foraging in an area, and how colony survival over time varies according to forage availability. Obj B: Determine whether MFCs have a competitive or facilitatory effect on pollination and seed-set of field-margin wildflowers. We will plant wild flowers in the margins used above and assess pollinator visitation, pollen deposition and consequent seed set. Five species of wild plant with different floral shapes and flowering times will be chosen. Thus they will be visited by different pollinators and we predict different levels of interaction with mass-flowering crops. It is currently not possible to predict whether these interactions will be positive or negative. Obj C: Development and testing of a GIS-based forage map and associated model to predict how the distribution and phenology of forage in arable landscapes determines which areas act as sinks or sources for bumblebees. Our existing 10 x 10 km forage map will be enlarged to 15 x 15 km, and resolution improved to 60 cm. We will use the existing map to identify training areas in the new imagery, prior to supervised classification. Predictions of the effects of changing forage availability through the season on bumblebee colony survival will be tested against observed survival (Obj A). Development of new spatially-articulate models based on the same GIS map to predict the effects of the landscape-scale distribution of MFCs on wildflower reproduction. (joint with BBE0009321 and BBE0027571; cofunded by NERC)

Summary

There is a widespread perception that pollinators are in decline, and that this threatens both natural plant communities and agricultural productivity. Although this decline has recently been questioned, most authorities agree that some important pollinator groups, notably bumblebees, have declined in both abundance and range in Europe. There are also well documented declines in abundance of many plant species in the UK, particularly perennial herbs such as cowslips and red clover. The cultivation of mass-flowering crops (primarily oilseed rape and field beans) in the UK has been arguably the most dramatic change to the floral landscape for centuries. Recent work by the applicants shows that, when in bloom, the amount of pollen and nectar provided by these crops greatly exceeds that provided by all other insect-visited flowering plants combined in arable landscapes. We still have a poor understanding, however, of the impact that this brief glut of floral resources has on pollinator populations or on the reproduction of wildflowers. There is disagreement as to whether mass-flowering crops are of benefit to populations of bumblebees (they provide a lot of resources, but colony success requires a continuous supply of food throughout spring and summer, and some bee species avoid shallow flowers like oilseed rape). Mass-flowering crops are also likely to affect pollination and hence seed set in wildflowers of arable ecosystems. But it is unclear whether wildflowers will suffer adverse affects from competition with the crop for pollinators or through stigma-clogging with pollen from such crops, or conversely whether they will benefit from a boost to local pollinator populations. The answer will depend on the phenology and floral similarity of crop and wildflower. Wild flower population processes and their pollinators' population dynamics in farmland have never been considered together in a single project. This project aims to capitalise on previous BBSRC-funded workby the applicants, to assess how the amount and landscape-scale spatial distribution of mass-flowering crops affect pollinator populations (particularly bumblebees) and reproduction of wildflowers, using a three-pronged approach: A. Studies of the effects of oilseed rape and field beans on bumblebee colony survival, focussing on two contrasting bee species, the longer tongued B. pascuorum and the shorter-tongued B. lapidarius. Molecular approaches pioneered by the applicants will be used to detect nests through the season (Goulson@Stirling). B. Studies of the effects of these same mass-flowering crops on pollinator visitation and seed-set in five target wildflower species, chosen to provide a range of phenologies and flower morphologies (Osborne@Rothamsted) Ci) Expansion, development and testing of an existing GIS-based forage map and associated model to predict how the distribution and phenology of forage in arable landscapes determines pollinator abundance, and in particular which areas act as sinks for bumblebees, and which act as sources (net exporters of queens) (Sanderson@Newcastle) Cii) Use of the same forage map to develop new spatially-articulate models to examine the broader, landscape scale effects of mass-flowering crops on pollinator visitation to, and seed set in, wildflower populations In combination, this work will enable us to evaluate the likely ecological consequences of growing mass-flowering crops on pollinators and wildflowers, and will substantially increase our ability to predict and manipulate the impacts of agricultural practices on farmland biodiversity. The project is of direct relevance to policy makers producing schemes for arable and countryside stewardship, for example those advising on field margin management. Practices that encourage large bumblebee populations will in turn boost pollination of crops and wild plants, underpinning the sustainability of a diverse flora on unfarmed agricultural land.
Committee Closed Committee - Agri-food (AF)
Research TopicsCrop Science, Plant Science
Research PriorityX – Research Priority information not available
Research Initiative X - not in an Initiative
Funding SchemeX – not Funded via a specific Funding Scheme
terms and conditions of use (opens in new window)
export PDF file